Serveur d'exploration sur la génomique des pucciniales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

AB-QTL analysis in winter wheat: II. Genetic analysis of seedling and field resistance against leaf rust in a wheat advanced backcross population.

Identifieur interne : 000945 ( Main/Exploration ); précédent : 000944; suivant : 000946

AB-QTL analysis in winter wheat: II. Genetic analysis of seedling and field resistance against leaf rust in a wheat advanced backcross population.

Auteurs : Ali Ahmad Naz [Allemagne] ; Antje Kunert ; Volker Lind ; Klaus Pillen ; Jens Léon

Source :

RBID : pubmed:18338154

Descripteurs français

English descriptors

Abstract

The present study aimed to localize exotic quantitative trait locus (QTL) alleles for the improvement of leaf rust (P. triticina) resistance in an advanced backcross (AB) population, B22, which is derived from a cross between the winter wheat cultivar Batis (Triticum aestivum) and the synthetic wheat accession Syn022L. The latter was developed from hybridization of T. turgidum ssp. dicoccoides and T. tauschii. Altogether, 250 BC2F3 lines of B22 were assessed for seedling resistance against the leaf rust isolate 77WxR under controlled conditions. In addition, field resistance against leaf rust was evaluated by assessing symptom severity under natural infestation across multiple environments. Simultaneously, population B22 was genotyped with a total of 97 SSR markers, distributed over the wheat A, B and D genomes. The phenotype and genotype data were subjected to QTL analysis by applying a 3-factorial mixed model analysis of variance including the marker genotype as a fixed effect and the environments, the lines and the marker by environment interactions as random effects. The QTL analysis revealed six putative QTLs for seedling resistance and seven for field resistance. For seedling resistance, the effects of exotic QTL alleles improved resistance at all detected loci. The maximum decrease of disease symptoms (-46.3%) was associated with marker locus Xbarc149 on chromosome 1D. For field resistance, two loci had stable main effects across environments and five loci exhibited marker by environment interaction effects. The strongest effects were detected at marker locus Xbarc149 on chromosome 1D, at which the exotic allele decreased seedling symptoms by 46.3% and field symptoms by 43.6%, respectively. Some of the detected QTLs co-localized with known resistance genes, while others appear to be as novel resistance loci. Our findings indicate, that the exotic wheat accession Syn022L may be useful for the improvement of leaf rust resistance in cultivated wheat.

DOI: 10.1007/s00122-008-0738-y
PubMed: 18338154
PubMed Central: PMC2358941


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">AB-QTL analysis in winter wheat: II. Genetic analysis of seedling and field resistance against leaf rust in a wheat advanced backcross population.</title>
<author>
<name sortKey="Naz, Ali Ahmad" sort="Naz, Ali Ahmad" uniqKey="Naz A" first="Ali Ahmad" last="Naz">Ali Ahmad Naz</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Crop Science and Resource Conservation, Crop Genetics and Biotechnology Unit, University of Bonn, Katzenburgweg 5, 53115 Bonn, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Crop Science and Resource Conservation, Crop Genetics and Biotechnology Unit, University of Bonn, Katzenburgweg 5, 53115 Bonn</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kunert, Antje" sort="Kunert, Antje" uniqKey="Kunert A" first="Antje" last="Kunert">Antje Kunert</name>
</author>
<author>
<name sortKey="Lind, Volker" sort="Lind, Volker" uniqKey="Lind V" first="Volker" last="Lind">Volker Lind</name>
</author>
<author>
<name sortKey="Pillen, Klaus" sort="Pillen, Klaus" uniqKey="Pillen K" first="Klaus" last="Pillen">Klaus Pillen</name>
</author>
<author>
<name sortKey="Leon, Jens" sort="Leon, Jens" uniqKey="Leon J" first="Jens" last="Léon">Jens Léon</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18338154</idno>
<idno type="pmid">18338154</idno>
<idno type="doi">10.1007/s00122-008-0738-y</idno>
<idno type="pmc">PMC2358941</idno>
<idno type="wicri:Area/Main/Corpus">000937</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000937</idno>
<idno type="wicri:Area/Main/Curation">000937</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000937</idno>
<idno type="wicri:Area/Main/Exploration">000937</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">AB-QTL analysis in winter wheat: II. Genetic analysis of seedling and field resistance against leaf rust in a wheat advanced backcross population.</title>
<author>
<name sortKey="Naz, Ali Ahmad" sort="Naz, Ali Ahmad" uniqKey="Naz A" first="Ali Ahmad" last="Naz">Ali Ahmad Naz</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Crop Science and Resource Conservation, Crop Genetics and Biotechnology Unit, University of Bonn, Katzenburgweg 5, 53115 Bonn, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Crop Science and Resource Conservation, Crop Genetics and Biotechnology Unit, University of Bonn, Katzenburgweg 5, 53115 Bonn</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Cologne</region>
<settlement type="city">Bonn</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kunert, Antje" sort="Kunert, Antje" uniqKey="Kunert A" first="Antje" last="Kunert">Antje Kunert</name>
</author>
<author>
<name sortKey="Lind, Volker" sort="Lind, Volker" uniqKey="Lind V" first="Volker" last="Lind">Volker Lind</name>
</author>
<author>
<name sortKey="Pillen, Klaus" sort="Pillen, Klaus" uniqKey="Pillen K" first="Klaus" last="Pillen">Klaus Pillen</name>
</author>
<author>
<name sortKey="Leon, Jens" sort="Leon, Jens" uniqKey="Leon J" first="Jens" last="Léon">Jens Léon</name>
</author>
</analytic>
<series>
<title level="j">TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</title>
<idno type="ISSN">0040-5752</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Basidiomycota (pathogenicity)</term>
<term>Chromosome Mapping (MeSH)</term>
<term>Chromosomes, Plant (MeSH)</term>
<term>Crosses, Genetic (MeSH)</term>
<term>Genetic Markers (MeSH)</term>
<term>Immunity, Innate (genetics)</term>
<term>Plant Diseases (genetics)</term>
<term>Plant Diseases (immunology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (microbiology)</term>
<term>Quantitative Trait Loci (genetics)</term>
<term>Seedlings (genetics)</term>
<term>Seedlings (microbiology)</term>
<term>Triticum (genetics)</term>
<term>Triticum (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Basidiomycota (pathogénicité)</term>
<term>Cartographie chromosomique (MeSH)</term>
<term>Chromosomes de plante (MeSH)</term>
<term>Croisements génétiques (MeSH)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (microbiologie)</term>
<term>Immunité innée (génétique)</term>
<term>Locus de caractère quantitatif (génétique)</term>
<term>Maladies des plantes (génétique)</term>
<term>Maladies des plantes (immunologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Marqueurs génétiques (MeSH)</term>
<term>Plant (génétique)</term>
<term>Plant (microbiologie)</term>
<term>Triticum (génétique)</term>
<term>Triticum (microbiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Genetic Markers</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Immunity, Innate</term>
<term>Plant Diseases</term>
<term>Plant Leaves</term>
<term>Quantitative Trait Loci</term>
<term>Seedlings</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Immunité innée</term>
<term>Locus de caractère quantitatif</term>
<term>Maladies des plantes</term>
<term>Plant</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Maladies des plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Plant Diseases</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Maladies des plantes</term>
<term>Plant</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Plant Leaves</term>
<term>Seedlings</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Basidiomycota</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromosome Mapping</term>
<term>Chromosomes, Plant</term>
<term>Crosses, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cartographie chromosomique</term>
<term>Chromosomes de plante</term>
<term>Croisements génétiques</term>
<term>Marqueurs génétiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The present study aimed to localize exotic quantitative trait locus (QTL) alleles for the improvement of leaf rust (P. triticina) resistance in an advanced backcross (AB) population, B22, which is derived from a cross between the winter wheat cultivar Batis (Triticum aestivum) and the synthetic wheat accession Syn022L. The latter was developed from hybridization of T. turgidum ssp. dicoccoides and T. tauschii. Altogether, 250 BC2F3 lines of B22 were assessed for seedling resistance against the leaf rust isolate 77WxR under controlled conditions. In addition, field resistance against leaf rust was evaluated by assessing symptom severity under natural infestation across multiple environments. Simultaneously, population B22 was genotyped with a total of 97 SSR markers, distributed over the wheat A, B and D genomes. The phenotype and genotype data were subjected to QTL analysis by applying a 3-factorial mixed model analysis of variance including the marker genotype as a fixed effect and the environments, the lines and the marker by environment interactions as random effects. The QTL analysis revealed six putative QTLs for seedling resistance and seven for field resistance. For seedling resistance, the effects of exotic QTL alleles improved resistance at all detected loci. The maximum decrease of disease symptoms (-46.3%) was associated with marker locus Xbarc149 on chromosome 1D. For field resistance, two loci had stable main effects across environments and five loci exhibited marker by environment interaction effects. The strongest effects were detected at marker locus Xbarc149 on chromosome 1D, at which the exotic allele decreased seedling symptoms by 46.3% and field symptoms by 43.6%, respectively. Some of the detected QTLs co-localized with known resistance genes, while others appear to be as novel resistance loci. Our findings indicate, that the exotic wheat accession Syn022L may be useful for the improvement of leaf rust resistance in cultivated wheat.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18338154</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>11</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0040-5752</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>116</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2008</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik</Title>
<ISOAbbreviation>Theor Appl Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>AB-QTL analysis in winter wheat: II. Genetic analysis of seedling and field resistance against leaf rust in a wheat advanced backcross population.</ArticleTitle>
<Pagination>
<MedlinePgn>1095-104</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00122-008-0738-y</ELocationID>
<Abstract>
<AbstractText>The present study aimed to localize exotic quantitative trait locus (QTL) alleles for the improvement of leaf rust (P. triticina) resistance in an advanced backcross (AB) population, B22, which is derived from a cross between the winter wheat cultivar Batis (Triticum aestivum) and the synthetic wheat accession Syn022L. The latter was developed from hybridization of T. turgidum ssp. dicoccoides and T. tauschii. Altogether, 250 BC2F3 lines of B22 were assessed for seedling resistance against the leaf rust isolate 77WxR under controlled conditions. In addition, field resistance against leaf rust was evaluated by assessing symptom severity under natural infestation across multiple environments. Simultaneously, population B22 was genotyped with a total of 97 SSR markers, distributed over the wheat A, B and D genomes. The phenotype and genotype data were subjected to QTL analysis by applying a 3-factorial mixed model analysis of variance including the marker genotype as a fixed effect and the environments, the lines and the marker by environment interactions as random effects. The QTL analysis revealed six putative QTLs for seedling resistance and seven for field resistance. For seedling resistance, the effects of exotic QTL alleles improved resistance at all detected loci. The maximum decrease of disease symptoms (-46.3%) was associated with marker locus Xbarc149 on chromosome 1D. For field resistance, two loci had stable main effects across environments and five loci exhibited marker by environment interaction effects. The strongest effects were detected at marker locus Xbarc149 on chromosome 1D, at which the exotic allele decreased seedling symptoms by 46.3% and field symptoms by 43.6%, respectively. Some of the detected QTLs co-localized with known resistance genes, while others appear to be as novel resistance loci. Our findings indicate, that the exotic wheat accession Syn022L may be useful for the improvement of leaf rust resistance in cultivated wheat.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Naz</LastName>
<ForeName>Ali Ahmad</ForeName>
<Initials>AA</Initials>
<AffiliationInfo>
<Affiliation>Institute of Crop Science and Resource Conservation, Crop Genetics and Biotechnology Unit, University of Bonn, Katzenburgweg 5, 53115 Bonn, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kunert</LastName>
<ForeName>Antje</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lind</LastName>
<ForeName>Volker</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pillen</LastName>
<ForeName>Klaus</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Léon</LastName>
<ForeName>Jens</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Theor Appl Genet</MedlineTA>
<NlmUniqueID>0145600</NlmUniqueID>
<ISSNLinking>0040-5752</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005819">Genetic Markers</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001487" MajorTopicYN="N">Basidiomycota</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003433" MajorTopicYN="N">Crosses, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005819" MajorTopicYN="N">Genetic Markers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007113" MajorTopicYN="N">Immunity, Innate</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="N">Quantitative Trait Loci</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>07</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>02</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>11</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18338154</ArticleId>
<ArticleId IdType="doi">10.1007/s00122-008-0738-y</ArticleId>
<ArticleId IdType="pmc">PMC2358941</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genome. 2000 Aug;43(4):689-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10984182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2004 Oct;94(10):1036-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18943790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2006 Feb;112(3):500-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16331478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Sep;109(5):933-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15243706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):15253-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Jun;164(2):655-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12807786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 Aug;111(4):731-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15965649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 1998 Sep;88(9):890-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18944865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1990 Nov;80(5):609-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24221066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Jul 7;289(5476):85-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10884229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 Feb;110(3):550-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15655666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 1994 Jun;37(3):405-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18470084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Aug;149(4):2007-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9691054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2006 Oct;113(6):1027-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16896713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2006 Mar;112(5):787-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16463062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1992 Jun;84(1-2):97-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24203034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1996 Feb;92(2):191-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24166168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2004 Oct;109(6):1105-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15490101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2003 Jul;107(2):340-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12677407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 May;104(6-7):1164-1172</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2002 Aug;105(2-3):413-422</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12582546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2005 Aug;111(3):583-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15902395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2003 May;106(8):1379-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12750781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2007 Sep;115(5):683-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17634917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Sep;65(1-2):93-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17611798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2006 May;112(7):1360-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16550399</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>District de Cologne</li>
<li>Rhénanie-du-Nord-Westphalie</li>
</region>
<settlement>
<li>Bonn</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Kunert, Antje" sort="Kunert, Antje" uniqKey="Kunert A" first="Antje" last="Kunert">Antje Kunert</name>
<name sortKey="Leon, Jens" sort="Leon, Jens" uniqKey="Leon J" first="Jens" last="Léon">Jens Léon</name>
<name sortKey="Lind, Volker" sort="Lind, Volker" uniqKey="Lind V" first="Volker" last="Lind">Volker Lind</name>
<name sortKey="Pillen, Klaus" sort="Pillen, Klaus" uniqKey="Pillen K" first="Klaus" last="Pillen">Klaus Pillen</name>
</noCountry>
<country name="Allemagne">
<region name="Rhénanie-du-Nord-Westphalie">
<name sortKey="Naz, Ali Ahmad" sort="Naz, Ali Ahmad" uniqKey="Naz A" first="Ali Ahmad" last="Naz">Ali Ahmad Naz</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RustFungiGenomicsV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000945 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000945 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RustFungiGenomicsV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18338154
   |texte=   AB-QTL analysis in winter wheat: II. Genetic analysis of seedling and field resistance against leaf rust in a wheat advanced backcross population.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18338154" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RustFungiGenomicsV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 18:06:51 2020. Site generation: Fri Nov 20 18:08:25 2020